Proceedings of the Hawaii International Conference on System Sciences

Maui, Hawaii, January 1996, pp. 326-355.

Spreadsheets on Trial

Spreadsheets on Trial:

A Survey of Research on Spreadsheet Risks

Raymond R. Panko
Richard P. Halverson, Jr.

University of Hawaii
University of Hawaii

panko@hawaii.edu
richardh@uhunix.uhcc.hawaii.edu
Abstract

Even the earliest writers in end user computing remarked on the potential dangers of end user spreadsheet development. Until recently, there was only anecdotal evidence to support their concerns. Now, there is considerable evidence from experiments, field audits, and surveys of end users and organizations that early concerns were well-founded. This paper presents a framework for risks in spreadsheeting and organizes selected research findings in terms of this framework.

1. Introduction

In recent years, magazines have reported many instances of spreadsheet disasters. Some consultants, furthermore, have claimed that 20% to 40% of all spreadsheets have errors, but they have not been able to provide data to support their claims.

Today, concerns for the riskiness of spreadsheets are being fueled by more systematic data. Although there is still a great deal of research left to be done, we can now turn to quite a number of laboratory experiments, field audits, surveys of users, and surveys of organizations. As we will see, these studies already paint a rather compelling picture.

If there are errors in even a tiny fraction of all real world spreadsheet models, the implications are serious. Each year, literally tens of millions of managers and professionals create hundreds of millions of spreadsheet models. Many of these models are used to guide “mission critical” decisions. In the future, the importance of spreadsheeting should continue to grow, as more managers and professionals learn to spreadsheet, and as client/server computing turns increasingly to spreadsheets as client programs.

This paper offers a taxonomy for understanding issues in spreadsheet risks. As shown in Figure 1, this is the spreadsheet research risks cube. As its name suggests, it is designed to help the reader understand research issues.

Figure 1: Spreadsheet Research Risks Cube

The figure has three dimensions. The first consists of dependent variables. These are the issues to be addressed by research.

The second dimension consists of the stages in the systems development life cycle. As Appendix A shows, error rates vary considerably by stage. That Appendix shows that some stages have not been studied at all in experiments and field audits, notably the requirements and design stages.

The third dimension consists of research methodology. Each methodology has strengths and weaknesses. Unfortunately, research in most areas is dominated by a single methodology. Because methodology issues are discussed in many books, we will not consider methodology in this paper.

Dependent Variables

The first dimension of the spreadsheet error cube shows dependent variables—the issues that research projects have been created to address.

Structural Concerns

Broadly, a number of writers have expressed concerns over spreadsheeting as a development language. These writers have focused on such conderns as cryptic formulas and the difficulty in seeing more than one formula at a time.

Actual Errors

The next dependent variable is errors. Studies focusing on this variable count the number of errors in spreadsheet models created in the laboratory or in the field.

Quantitative Versus Qualitative Errors

Error is an extremely complex phenomenon. At the highest level, there is a dichotomy between quantitative errors and qualitative errors. Quantitative errors are numerical errors that lead to incorrect bottom-line values.

Qualitative errors, in turn, are flaws that do not produce immediate quantitative errors. But they do degrade the quality of the spreadsheet model and may lead to quantitative errors during later “what if” analyses or updates to the model. Others make debugging difficult, raise maintenance costs, or may cause users to misinterpret the model’s results or proper usage.

Mechanical, Logic, and Omission Errors

Most studies have looked only at quantitative errors in detail. They have shown that there are multiple types of quantitative errors. We argue that a simple trichotomy captures this diversity reasonably well.

Mechanical Errors

Mechanical errors are typing errors, pointing errors, and other simple slips. Mechanical errors can be frequent, but they have a high chance of being caught by the person making the error.

Logic Errors

Logic errors are incorrect formulas due to choosing the wrong algorithm or creating the wrong formulas to implement the algorithm.

Omission Errors

Omissions are things left out of the model that should be there. They often result from a misinterpretation of the situation. Human factors research has shown that omission errors are especially dangerous, because they have low detection rates.

Eureka and Cassandra Errors

In addition, each of these error types probably has multiple subtypes. For instance, it seems useful to distinguish between easy-to-prove logic errors, called Eureka errors [Lorge & Solomon, 1955], and logic errors that are difficult to prove even if they are detected, called Cassandra errors [Panko & Halverson, 1995].

Pure and Domain Logic Errors

Another distinction within logic errors appears to be whether an error is a pure logic error, resulting from a lapse in logic, or a domain logic error, which occurs because the developer lacks required domain knowledge.

Measures of Error Rates

Appendix A presents a brief tabular summary of studies done to date that have looked at quantitative errors. Perhaps most significantly, this table shows that every study that has looked for errors has found them and has found them in considerable abundance.

Percentage of Models Containing Errors

The table contains three broad measures for quantitative error rates. One is the percentage of spreadsheet models containing errors. This measure tells how widespread problems really are. Appendix A has shown that the fraction of incorrect spreadsheets has been high in every study.

Number of Errors per Model

The percentage of spreadsheets containing errors does not tell us how many errors each model contains. Another measure, number of errors per model, tells whether an incorrect model has one or multiple errors.

Error Magnitude

It is important to understand the magnitude of errors, not merely their number. Some errors are unimportant, others important. One measure is the size of the error as a percentage of the correct bottom-line value. Another is whether a decision would have been different had the error not been made. We suspect that quite a few errors are either too small to be important or still gave answers that lead to the correct decision.

Cell Error Rate (CER)

Another attractive measure is the cell error rate (CER). This is the percentage of cells that have errors. From Appendix A, it is clear that the models studied had relatively few errors. But models typically have long cascades of cells leading to bottom-line values. Even a tiny CER will multiply into a high probability of a bottom-line error.

One advantage of measuring CERs is that they allow us to compare spreadsheets of different sizes. In programming, code inspection studies have long reported error rates in industrial programs and have found them to fall consistently into the range 3% to 7% [Panko & Halverson, 1995]. So you can estimate the number of errors you are likely to find in a program by multiplying the number of non-comment lines of code by about 5%. Appendix A shows that CERs in spreadsheeting experiments and one field study have been comparable.

User Work Practices

While actual errors are the most obvious things to measure, we need to understand how users work. Do they plan their spreadsheets before building them? Do they test them with data and do code inspection after building them? Do they get others to audit their spreadsheets? Do they use cell protection?

Appendix B summarizes results from studies that have asked spreadsheet developers how they work. Some were surveys. They asked the respondent to select a single spreadsheet to describe. Two were ethnographic studies, which used in-depth interviews. One of these—Hendry and Green [1994] also had the subject go through one spreadsheet and explain it to the researcher.

In general, the pattern that emerges in not encouraging. Preplanning and post-development debugging do not appear to embody the systems development life cycle concerns that are now considered mandatory in professional programming. Even such simple things as using cell protection are far from universal. One study [Hall, 1996] asked respondents both whether they used various controls and thought that they should have used them. In almost all cases, “should have used” was much higher than “actually used,” sometimes by a wide margin.

Assumptions

In the military, there is a saying, “Assumption is the mother of all foul-ups” (or something like this). We need to study how people treat their assumptions.

At the most blatant extreme, a developer may even include deliberately incorrect data, or at least data from estimates that are dubious but support their cases.

At a more moderate level, there is a natural human tendency to select assumptions that fit our expectations and desires. We would like to know how the selection of assumptions biases bottom-line values. These biases may be several times larger than unintended mechanical, logic, or omission errors.

In addition, even when there is not bias, there is likely to be uncertainty. We would like to know how the magnitude of uncertainties in assumptions compares to the magnitude of actual errors.

Spreadsheet Model Characteristics

Obviously, not all spreadsheet models are the same. Some are large, others small. Some are mostly numbers, others mostly formulas. Some use mostly simple formulas, others extremely complex formulas. We need to have a data on the distribution of intrinsic spreadsheet characteristics.

We also need to understand how individuals, groups and organizations use spreadsheet models. Some are one-time models, while others are templates for repeated use. Some are used by a single person, others by many. Some are used for personal decisions, others to guide critical corporate choices.

Obviously, some spreadsheet models are riskier than others. Floyd, Walls & Marr [1995] distinguished between importance and materiality. They defined importance as “the degree to which a decision is based on the information gained by using a spreadsheet. (p. 40).” They defined materiality, in turn, as “the economic impact on the company of decisions made using information gained from spreadsheet models (p.40).” In another paper, Schultheis and Sumner [1994] present a multi-item index for measuring the riskiness of a given spreadsheet.

Control Policies

We also need to understand control policies in corporations. Do corporations have spreadsheet control policies? If so, do users know about them? What do these policies specify? Who is responsible for making sure these policies are followed?

Appendix C summarizes selective results from a number of surveys that looked at corporate practices. In general, few organizations seem to have explicit, written policies. What control does exist seems to depend on individuals, workgroup management, and informal expectations. Given the magnitudes of spreadsheet errors in Appendix A, this does not seem appropriate.

Stage in the Development Life Cycle

The second dimension in Figure 1 is stage in the development life cycle of the spreadsheet model. Models, like programs, go through a series of development stages: requirements, design, cell entry, draft, deep debugging, and operational use. Obviously, error rates vary over the life cycle, because many errors are caught as the model moves from initial requirements through operational use.

Requirements and Design

In programming, it is universally viewed as important to determine your requirements before begin coding. Yet two experiments that timed people as they built spreadsheets found that subjects began to work almost immediately [Brown & Gould, 1987; Panko & Halverson, 1995]. In addition, Cragg and King [1993] found that their professional developers engaged in little initial analysis and design.

Cell Entry Stage

When people enter numbers and formulas in cells, they may make many mistakes that they correct immediately. Although these errors are corrected, we would still like to study cell entry, because some errors may be more frequent or more difficult to correct than others.

In programming, Ruby, Dana, and Biche [1975] have not looked at errors that programmers make when entering individual lines of code. They found that they made mistakes in 10% of all lines. In spreadsheeting, Olson and Nilsen [1987-1988] found formula error rates about twice as large. Obviously, this is a relatively unexplored area.

Draft Stage

After creating the program carefully and doing spot checks for errors, a professional programmer stops working on the program. Studies have shown that there will still be errors in 3% to 7% of the non-comment lines of code [Panko & Halverson, 1995].

Appendix A shows that experiments and one field audit have found comparable cell error rates (by comparable, we mean within an order of magnitude). Obviously, we would like to have more field audits.

To reduce the error rate farther, the programmer must take special actions. They do extensive initial planning before coding, and they engage in extensive post-development debugging.

Experiments in spreadsheet development and ethnographic studies indicate that many spreadsheeters stop at the end of the draft stage and do not go on to reduce their errors systematically, beyond such things as looking for checking numbers for reasonableness [Brown & Gould, 1987; Panko & Halverson, 1995].

The survey results in Appendix B are not conclusive, but they do not seem to indicate widespread testing the draft spreadsheet with a variety of types of data or conducting cell-by-cell inspection by the developer or an inspection team.

Debugging Stage

To reduce error rates farther, professional programmers engage in a deep debugging stage that involves data testing and code inspection.

Code inspection is particularly difficult. In programming experiments, subjects only catch half or fewer of all programming errors [Panko, 1996]. Spreadsheet debugging experiments produce similar results [Galletta, et al., 1993, 1996; Panko 1996]. So even if spreadsheeters were to engage in intensive debugging activities, they might find it very difficult.

Operational Stage

In programming, even carefully debugged programs have errors in roughly two out of every thousand cells. Even if the same could be done in spreadsheeting, would this be sufficient?

Although errors continue to be caught during operation, this is an expensive time to catch them. Changing them can lead to modifications that produce even more errors, and considerable damage may have been done before detection. Cragg and King [1993] found that the operational spreadsheets they studied had to be modified frequently, and in 6 of the 20 cases, there had been problems with the model.

Conclusion

The three Appendices present a rather broad pattern of concerns. First, every study that has looked for errors has found them in considerable numbers. Second, user controls do not seem to approach the level of controls that professional programmers have found to be necessary in a similar application. Third, corporate controls tend to be nonexistent or completely informal. There are ample grounds for concern, and a great deal more research is needed.

Stepping back from the data, however, we should not find the error rates in Appendix A surprising. They are very close to error rates in programming. In addition, mechanical error rates, at least, are similar to those in typing, throwing switches, and other human factors research areas [Panko & Halverson, 1995].

Quite simply, the idiom “to err is human” is true. We do not make mistakes all the time, but we consistently make a certain number, even when we are being careful. To get down to lower error rates requires aggressive error reduction techniques. In spreadsheeting, we seem to be coming to the slow realization that we too will have to adopt the disciplines that programmers have long used when we deal with complex spreadsheets. The childhood of spreadsheeting is over.

7. References

Brown, P. S. & Gould, J. D. “An Experimental Study of People Creating Spreadsheets,” ACM Transactions on Office Information Systems (5:3) July 1987, pp. 258-272.

Cale, E. G., Jr., “Quality Issues for End-User Developed Software,” Journal of Systems Management (45:1) January 1994, pp. 36-39.

Cragg, P. G. & King, M. “Spreadsheet Modelling Abuse: An Opportunity for OR?” Journal of the Operational Research Society (44:8) August 1993, pp. 743-752.

Davies, N. & Ikin, C. “Auditing Spreadsheets,” Australian Accountant, December 1987, pp. 54-56.

Dent, A., personal communication with the first author via electronic mail, April 2, 1995.

Floyd, B. D. & Pyun, J. Errors in Spreadsheet Use, Working Paper 167, Information Systems Department, New York University, 1987.

Floyd, B. D., Walls, J., & Marr, K., “Managing Spreadsheet Model Development,” Journal of Systems Management (46:1) May/June 1995, pp. 38-43, 68.

Galletta, D. F.; Abraham, D.; El Louadi, M.; Lekse, W.; Pollalis, Y. A.; & Sampler, J. L. “An Empirical Study of Spreadsheet Error-Finding Performance,” Accounting Management Information Technology (3:2) 1993.

Galletta, D. F.; Hartzel, K. S.; Johnson, S.; Joseph, J.; & Rustagi, S. “An Experimental Study of Spreadsheet Presentation and Error Detection.” Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Maui, Hawaii, January 1996.

Galletta, D. F. & Hufnagel, E. M. “A Model of End-User Computing Policy,” Information & Management (22) 1992, pp. 1-18.

Hall, M. J. J., “A Risk and Control Oriented Study of the Practices of Spreadsheet Application Developers, Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Maui, Hawaii, January 1996.

Hassinen, K. An experimental study of spreadsheet errors made by novice spreadsheet users, Department of Computer Science, University of Joensuu, P. O. Box 111, SF-80101 Joensuu, Finland, 1988.

Hassinen, K., University of Joensuu, private communication with the first author, January 1995.

Hicks, L., NYNEX Corporation. Private communication with the author, June 1995.

Hendry, D. G. & Green, T. R. G. “Creating, Comprehending, and Explaining Spreadsheets: A Cognitive Interpretation of What Discretionary Users Think of the Spreadsheet Model,” International Journal of Human–Computer Studies (40:6) June 1994, pp. 1033-1065.

Janvrin, D. & Morrison, J., “Factors Influencing Risks and Outcomes in End-User Development,” Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Maui, Hawaii, January 1996.

Lerch, F. J. Computerized Financial Planning: Discovering Cognitive Difficulties in Knowledge Building. Unpublished doctoral dissertation, University of Michigan, Ann Arbor, Michigan, 1988. Cited in Olson, J. R. & Olson, G. M., 1990.

Lorge, I. & Solomon, H. “Two Models of Group Behavior in the Solution of Eureka-Type Problems,” Psychometrika (20:2) June 1955, pp. 139-148.

Nardi, B. A. & Miller, J. R. “Twinkling Lights and Nested Loops: Distributed Problem Solving and Spreadsheet Development,” International Journal of Man-Machine Studies (34:2) February 1991, pp. 161-184.

Olson, J. R. & Nilsen, E. “Analysis of the Cognition Involved in Spreadsheet Interaction. Human-Computer Interaction (3:4) 1987-1988, pp. 309-349.

Panko, R. R. & Halverson, R. H. Patterns of Errors in Spreadsheet Development I: Quantitative Errors, Working Paper, Department of Decision Sciences, College of Business Administration, University of Hawaii, 2404 Maile Way, Honolulu, HI 96822, March 1995. ftp://splicer2.cba.hawaii.edu/panko/ sserrors/sswpmar.doc

Panko, R. R. “Hitting the Wall: Errors in Developing and Debugging in a “Simple” Spreadsheet Problem,” Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Maui, Hawaii, January 4-7, 1996.

Ruby, R. J.; Dana, J. A.; & Biche, P. W. “Quantitative Aspects of Software Validation,” IEEE Transactions on Software Engineering (SE-1:2) June 1975, pp. 156-155.

Schultheis, R. & Sumner, M. “The Relationship of Application Risks to Application Controls: A Study of Microcomputer-Based Spreadsheet Applications,” Journal of End User Computing (6:2) Spring 1994, pp. 11-18.

Speier, C & Brown, C. V., “Perceived Risks and Management Actions: Differences in End-User Application Development Across Functional Groups,” Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, Maui, Hawaii, January 1996.

Appendix A: Selected Results for Spreadsheet Errors in Experiments and Field Audits
	Study
	Remarks
	Cell Error Rate
	Errors per Model
	Pct. of Models with Errors

	Cell-Entry Stage
	
	
	
	

	Olson & Nilsen [1985, 1987-1988]
	Observed 14 subjects entering a spreadsheet model from printout. Measured errors in 4 formula entries each. CER is errors per 100 formula cell.
	21%*
	
	

	Floyd and Pyun [1987]
	Studied text entries in the Olson & Nilsen [1985, 1987-1988] data. Cell error rate is for cells with typographical errors.
	12.5%
	
	

	
	
	
	
	

	Draft Stage
	
	
	
	

	Brown & Gould [1987]
	9 experienced SS developers each developed 3 models. All made at least one error.
	
	
	

	
	Minimal definition of errors
	
	0.6
	44%

	
	Broader definition of errors
	
	
	63%

	Lerch [1988]
	21 Lotus 1-2-3 users from industry filled in formulas in a template.
	
	
	

	
	All formula cells
	9.3%
	
	

	
	References to cells in the same row
	6.4%
	
	

	
	References to cells in the same column
	4.7%
	
	

	
	References to cells in both different columns & different rows
	14.1%
	
	

	
	Conceptual (logic) errors
	5.0%
	
	

	
	Overload (mechanical) errors
	4.3%
	
	

	Hassinen [1988]
	Novice students developed several SS models apiece.
	
	
	

	
	Paper and pencil development (N=92)
	4.3%*
	0.8
	55%

	
	Online development (N=10)
	
	1.7
	48%

	Hicks [1995]
	Three-person audit of a real spreadsheet to be used at NYNEX. Team found 45 errors in 3,856 cells. 43 classified by type. 27 mechanical, 14 logic, 2 omission.
	1.2%
	
	

	Panko & Halverson [1995]
	Upper division business students developed SS models from Galumpke word problem.
	
	
	

	
	General business students, working alone (N=35) All errors.
	5.4%
	2.4
	80%

	
	 Logic errors
	9.0%
	1.6
	

	
	 Eureka (easily disproven) logic errors
	4.1%
	0.7
	

	
	 Cassandra (difficult to disprove) logic errors
	48.5%
	1.0
	

	
	 Mechanical errors
	1.8%
	0.7
	

	
	General business students, dyads (N=44)
	3.8%
	1.7
	77%

	
	General business students, tetrads (N=40)
	2.0%
	0.9
	60%

	
	Accounting and finance majors (N=17)
	3.1%
	1.4
	53%

	Janvrin & Morrison [1996]
	Study 1: 61 upper-division business and graduate accounting students. Treatment group was taught a design methodology. Worked from a paper template with values and results filled in. Each model had 51 links between worksheets. Subjects had 16 days to complete the task. Worked for an average of 8.8 hours. CER is percentage of incorrect links between spreadsheets. Most errors were hard-coding a number instead of entering a link.
	
	
	

	
	Working alone, no training in design.
	14%
	
	

	
	Working alone, training in design.
	7%
	
	

	
	Working in pairs, no training in design.
	7%
	
	

	
	Working in pairs, training in design.
	7%
	
	

	Janvrin & Morrison [1996]
	Study 2: More difficult problem than Study 1. 66 links. Template for inputting formulas had only a single check figure. Subjects with training took 19 hours to do the task. All subjects worked alone. CER is percentage of incorrect links.
	
	
	

	
	No training in design (N=30).
	16.8%
	
	

	
	Training in design (N=58).
	8.4%
	
	

	Panko [1996]
	72 MIS majors developed SS models from the Wall word problem. Task was designed to be simple and domain-free. Even so, the CER was too high for safe model development.
	1.7%
	0.4
	38%

	Debugging Stage
	
	
	
	

	Galletta et al. [1993]
	30 CPAs and 30 MBAs. Debugged six models. Each had one seeded device error and one seeded domain error. Subjects subdivided into SS experts with more than 250 hours and novices with fewer hours. CER is percentage of seeded errors NOT identified. Subjects missed 54% of domain errors and 35% of device errors. Accountants made significantly fewer errors, due to fewer domain errors. Expertise increased speed but did not reduce errors.
	
	
	

	
	Total sample
	44%
	
	

	
	CPA novices (N=15)
	43%
	
	

	
	CPA experts (N=15)
	34%
	
	

	
	MBA novices (N=15)
	48%
	
	

	
	MBA experts (N=15)
	52%
	
	

	
	Domain (logic) errors
	54%
	
	

	
	Device (mechanical) errors
	35%
	
	

	Galletta et al. [1996]
	113 MBA students debugged a single model seeded with eight errors. Either looked at the model on-screen or on paper. Paper debuggers had significantly fewer errors, consistent with past literature on paper viewing versus on-screen viewing in other contexts. CER is percentage of seeded errors NOT identified.
	
	
	

	
	Overall (N=113)
	49%
	
	

	
	On-screen (N=45)
	55%
	
	

	
	On paper (N=68)
	45%
	
	

	Panko [1996]
	Errors missed while debugging own model. Students without errors during development made no changes, so none committed errors. Of 19 subjects whose models contained errors, only 3 corrected the model. CER is errors overlooked by students whose models contained errors.
	84%
	
	

	
	
	
	
	

	Operational Stage
	
	
	
	

	Davies & Ikin [1987]
	Audited 19 operational models from 10 different people in 10 different firms. Subjects expressed strong belief in their spreadsheets being error free. Only half used cell protection. Manual audits were “rare."
	
	
	21%

	Cragg & King [1993]
	Audited 20 operational models from 10 firms. 150 to 10,000 cells in size. Had been in use a median of 6 months and had an average of 7 updates. Only one had been tested by another person. All but one had been tested with data. Half had poor layout. Only a third used cell protection. Eight were for use by others, but in only two cases did others have input on the design. In 6 cases, there had been problems with the model.
	
	
	25%

	Dent [1995]
	Unknown number of operational models audited. Errors were mostly due to overwriting formulas with numbers because of lack of cell protection.
	
	
	30%

	Hall [1996]
	Surveyed 106 users. Subject selected a single model. Mean size was 218 KB. 36% had links to other spreadsheets. Only 17% solely for developer’s use. Only 17% were run once or only a few times. Only half used modular design; only 49% used cell protection. 71% checked formulas with test data, but only 33% used test data at limits of normal range. Only 17% checked by another developer, 5% by internal auditor, 6% by external auditor.
	
	
	

Appendix B: Studies Based on the Description of a Selected Spreadsheet Developed by the Subject

	Study
	Method/Sample
	Selected Findings

	Cragg & King [1993]
	Audit of 20 SSs from 10 firms.
	150 to 10,000 cells. Averaged 3 days to develop. Median use 6 months. Mean number of updates 7, usually because of lack of initial specification. 8 used by others. 6 had experienced problems. 5 had errors; but audit only lasted 2 hrs; “probably more.” Informal iterative development. 10 built without prior design or planning; 8 had prior design, usually rudimentary. 10 used poor layout. 1/3 used cell protection. Only 2 had good comments. All but one tested with data, but only 1 tested by another person; 1 by an auditing package. 7 used historical data; 5 used cross-checks. Only ½ had documentation of any kind; usually only sample input & output. One commented had troubles understanding old SSs.

	Davies & Ikin [1987]
	Audit of 19 SSs from 10 people in 10 firms.
	4 had actual errors. General belief in no errors. 1/2 used no cell protection. Only 2 used audit packages. Manual audits "rare.” 74% had structural problems; 68% had inadequate documentation.

	Floyd; Walls, & Marr [1995]
	72 end users in 4 corporations
	Average size 6,000 cells. Material value (economic impact of decision) not correlated with controls. High level of confidence. Mostly informally trained in SS.

	Hall [1996]
	106 SS developers
	Averaged 218 KB. 36% had links to other SSs; 21% had links to databases; 55% used macros; 47% used If function. Only 7% of low importance. 27% modified existing corporate data; 49% created new corporate data. Only 17% run once or a few times. Only 18% prepared for others to use. Examined 55 controls for 82 non-trivial SSs. In most cases, experts used more; respondents felt should be used more than was. Use of controls: Half modular; 49% cell protection. 71% used test data; only 50% knew of expected results prior to testing; only 33% used test data at limits of normal range; only 42% used test data with errors. Only 23% documented formulas; 23% assumptions & known limits. Checked by another: 17% another developer; 5% internal auditor; 6% external auditor. Only 40% formally trained.

	Schultheis & Sumner [1994]
	32 end user SS developers at authors’ university.
	Looked at 11 risks, 9 controls. Controls had multiple items. Respondent could select several items in a control; each counted. 54% of developers formally trained. 31% of SSs had design reviewed by other. 16% audited by auditor or consultant. 16% tested with data with known outputs; 62% checked with calculator. Very little documentation: 25% none, 25% detailed enough to list purpose, most just sample audit. Higher-risk SSs used more controls (6.7/11) than did lower-risk SSs (4.6/11). Higher used more verification of logic, training, and documentation. But use of controls was low in both cases.

Appendix C: Descriptions of Corporate/Workgroup Policies

	Study
	Method/Sample
	Selected Findings

	Cale 1994
	52 IS & non-IS managers in 25 firms
	Less than 1/10 of companies had written policies on testing SSs; about ¼ had unwritten polices; about 6/10 had no policies. Documentation standards similar. About 70% strongly agreed that lack of testing standards produced serious problems. None disagreed. Reluctant to impose standards if developed by person for own use. More likely as used by others, if updates database, or as size grows. 90% would require testing for development lasting one week; 100% if one month.

	Cragg & King [1993]
	FTF interviews with 17, questionnaire survey of 14, N=31.
	1/10 said firm had formal policies. 9/10 said no one in firm responsible for SS development.

	Floyd; Walls, & Marr [1995]
	72 end users in 4 corporations
	1/7 had development policies, 2/5 implementation policies; 2/3 development policies. 1/3 required approvals only for important models. Almost all: any policy existing initiated by workgroup. All functions had some policies; modification policies most common. None reported comprehensive standards for all models. None knew of disasters in their firms. Clan-based control policy: socialization.

	Galletta & Hufnagel [1992]
	107 MIS executives in mail survey
	End user computing, not just spreadsheeting. Restrictions on application development? 23% rule, 58% guideline, 28% don’t address; compliance level if address: 27% full compliance, 58% partial compliance; 15% ignore. Post-development audit requirement? 15% rule, 34% guideline, 52% don’t address; compliance level if address: 10% full compliance, 49% partial compliance; 41% ignore.

	Hall [1996]
	
	Only 11% new of a comprehensive corporate policy; only 1/3 of these could be located it in written form.

	Hendry & Green [1994]
	Ethnographic interviews with 11 SS developers
	Modeled after Nardi & Miller [1991] but added a part in which the interviewer went over a specific SS with the developer. Generally repeated Nardi & Miller, but noted pattern of difficulty in comprehending parts of SSs. Describing efforts to build error-free models by taking specific actions. Later, Hendry [1994] noted that only three were “highly numerate” in carefully building models; Green [1994] said that comprehensive code inspection during a testing phase was not part of the “spreadsheet culture.”

	Nardi & Miller [1991]
	Ethnographic interviews with 11 SS developers
	Extensive joint development mixed programming & domain expertise; sometimes other built difficult parts; other times other checked for reasonableness, gave guidance. Considerable evidence of taking care in development; conscious of errors; spend considerable time debugging. Reasonableness, cross-footings, spot-checking of values, examining formulas. Gave one example of comprehensive code inspection—the subject was taking over a SS developed by another.

	Speier & Brown [1996]
	Study of 3 departments
	Study of overall EUC, not just SS. Interviewed managers of 3 departments in a firm: financial operations, marketing and sales. Questionnaire interviews of 22 end users. Company has few corporate rules beyond backup, which is not enforced. Managers differed in concerns. End users differed by department in awareness of norms and perceptions of benefits. Mostly unwritten norms. Underscores importance of department perspective.

Page 10

_874226989.unknown

